

Opportunities for process intensification and waste management

David M. Walker

Senior Research Manager, MTDC

23 Apr 2019

We make difficult choices, but we <u>never</u> compromise Quality, Compliance or Safety.

Small Molecule API Adds Significant Value in Singapore

Breakthroughs that change patients' lives® https://www.pfizer.com/

Inflammation & Immunology

Internal Medicine

Oncology

Rare Disease

Our Products

Source: Pfizer 2018 Annual Review

Pfizer Asia Pacific Pte Ltd (PAPPL)

Tuas, Singapore

Singapore's multi purpose organic synthesis plant (PAPPL) is where 5 of Pfizer's top 10 drugs-by-revenue are made

> Lyrica – US\$ 4,969 M Ibrance – US\$ 4,188 M Xeljanz – US\$ 1,774 M Sutent – US\$ 1,049 M Norvasc – US\$ 1,024 M

Manufacturing Technology Development Centre (MTDC)

Source: Pfizer 2018 Annual Report

Pfizer Global support on financing energy efficient investments

Pfizer is integrating environmental sustainability into business operations through our Green Journey.

Pfizer's Environmental Sustainability Goals

Compared with a 2012 baseline, by the end of 2020 Pfizer will:

- Reduce greenhouse gas emissions by 20%
- Reduce the amount of waste disposed by 15%
- Reduce water withdrawal by 5% (excluding non-contact cooling water)

GLOBAL SUPPLY

Raising the Bar with Technology

Moving from API Manufacturing Processes involving consecutive stages of readily reproducible, traditional batch chemistry

to

Bespoke sequence of manufacturing process stages using proprietary technology, not easily accessed by conventional producers

Batch manufacturing

- Synthetic Organic Chemists
- Chemical engineers

Continuous Manufacturing

Continuous Stage

Advanced Process Control

Digitalisation IIOT

Biocatalysis

Decontamination Platform

Hybrid Plant

New Capabilities Required

- Computational Modelling & Design
- Kinetics/Flow
 Engineers
- Advanced Process Control/ Machine Learning
- Robotics / Augmented Reality
- Process Analytics
- Data & Systems Integrators
- Data Integrity
- Encryption & Cyber Security
- Synthetic Organic Chemists
- Chemical engineers

Pharma Innovation Programme Singapore(PIPS)

Lead the global transformation of Pharma Manufacturing to create unique value for Patients, Pharma and Singapore...

Synthesis of active pharmaceutical ingredients (APIs)

Separation processes (i.e. distillations, filtration, centrifugation) make up 40-70 % of capital and operating costs¹.

Where might we usefully apply membranes for API manufacturing? 2 broad potential areas

1 Marchetti, Patrizia, et al. Chem. Reviews 114.21 (2014): 10735-10806. Img source: Gerogiorgis and Jolliffe, <u>Chimica Oggi-Chemistry Today</u>, <u>Vol. 33(6)</u>, Pg 29-32

1. Process intensification

GLOBAL SUPPLY

Processes

- a. Concentration of API/intermediate
- b. Solvent exchange
- c. Purification

removal of impurities/byproducts

from products [<900 Da]

- d. Cooling
- e. Dilution
- f. Reaction/bio-reactions
- g. Crystallisation

Marchetti, Patrizia, et al. Chem. Reviews 114.21 (2014): 10735-10806.

Comparison with current operations

Operation	Solvent Swap	Water removal	
Initial stream composition	Toluene/THF mixture with IPA and API	Ethyl acetate (97.1%), water (2.9%), traces of methylene chloride plus API	MTBE (~98.5%), water (~1.5%) and API
Typical process	4 distillations	2 vacuum distillation	Dean Stark Reflux
Volume/ Time	6600 L/ 60h	6400L/ 10-30h	6700L/ 12h, < 25 °C
Stream specifications	IPA with product spec of < 1 wt.% THF and <1 wt.% toluene;	Ethyl acetate stream with < 0.6 wt% water	MTBE stream with <0.2 wt% water

2. Waste management ^a

Eliminating environmental contamination from water released to public sewers and reduction for **waste incineration**.

Challenges:

- traces of API, metals and organic solvent
- halogenated waste (incl. chlorinated aromatics)

Cost of incineration ~\$ millions globally per annum

a. <u>https://ec.europa.eu/info/law/better-regulation/initiatives/ares-2017-2210630_en</u> | IMG source: Adobe Stock

Moving from paper to plant

Checklist for implementation

- Organic solvent compatibility
- (THF, DMSO, MTBE, DMF etc)
- Stability (no leechables)
- Reasonable resources and timelines for commercial vs specific solution development
- Proof-of-Concept at scale
- Value calculations

Benefits

- ✓ Improved separation efficiency
- ✓ lowered cycle time and costs,
- ✓ environmental sustainability, and
- ✓ continuous operations

Summary

- Waste management and process intensification are two broad interest areas.
- Development of talent pool and advisors for translation and implementation of membranes at industrial scale will be valuable.
- A win-win for consumers and companies with increased productivity, continuous improvement, lowered costs, and reduced environmental impact.

Thank You!

For queries and opportunities, kindly email David at David.M.Walker@pfizer.com

Most TRUSTED

